Тазобедренный сустав относится к сложным
На рентгеновских снимках анатомия тазобедренного сустава выглядит просто и понятно даже далёким от медицины людям, однако, всё не так банально, как кажется на первый взгляд. Хотя сочленение состоит всего из двух костей и визуально напоминает обычный шарнир, его полноценная работа включает гораздо больше возможностей, нежели простое вращение в строго ограниченном радиусе. Сустав обеспечивает полноценную ходьбу, поддерживает организм в вертикальном положении и помогает нижним конечностям справляться с высокими нагрузками. В чём заключаются анатомические особенности тазобедренного сочленения, от чего зависит нормальная физиология сустава и как она изменяется с возрастом? Давайте рассмотрим сложные вопросы ортопедической анатомии более наглядно и последовательно.
Базовая анатомия тазобедренного сустава: кости, образующие сочленение
Тазобедренный сустав человека образуют две кости, поверхности которых в идеале совпадают, словно кусочки паззла. Вертлужная впадина на поверхности подвздошной кости играет роль своеобразной лузы, в которую погружается шарообразный отросток бедренной кости — головка, полностью покрытая прочным и эластичным хрящиком. Такой комплекс напоминает шарнир, вращение которого достигается за счёт гармоничного совпадения размеров и форм примыкающих костно-хрящевых структур.
Мягкое и безболезненное скольжение между двумя довольно плотно примыкающими костями достигается благодаря особому строению хрящевых тканей. Комбинация коллагеновых и эластиновых волокон позволяет поддерживать жёсткую и одновременно упругую структуру хрящей, а молекулы протеогликанов и входящей в состав воды гарантируют необходимую податливость и эластичность. Кроме того, именно эти вещества отвечают за своевременное выделение оптимального количества суставной жидкости, которая служит амортизатором во время движения, защищая чувствительные хрящики от истирания.
Полость сустава ограничена специальной капсулой, основу которой составляют фиброзные волокна. Эти молекулы отличаются повышенной прочностью, благодаря чему даже под большим давлением сустав сохраняет свою целостность и первоначальную форму. Впрочем, этот резерв не безграничен, и на 100 % гарантировать невозможность вывиха, к сожалению, нельзя: при неадекватных нагрузках, сильнейшем давлении извне или резком смещении в пространстве столь нетипичная травма вполне реальна.
Тазобедренный сустав: анатомия связочного аппарата
Очень важную роль в функциональности тазобедренного сустава играют связки. Именно эти сверхпрочные волокна поддерживают оптимальную форму сустава, обеспечивают в должной мере подвижность и активность сочленения, защищают от травм и деформации. Связочный аппарат тазобедренного сустава представлен мощнейшими волокнами:
- Подвздошно-бедренная — самая мощная и прочная связка человеческого организма, способная выдержать неимоверную нагрузку без разрывов и растяжений. Экспериментальные опыты показали, что её волокна способны выдерживать нагрузку, сравнимую с тяжестью 3 центнеров. Именно благодаря этому сустав остаётся защищённым при интенсивных тренировках, неудачных движениях и прочих неприятных неожиданностях, затрагивающих подвижность бедренного сочленения.
- Седалищно-бедренная — куда более тонкая и мягкая связка, контролирующая степень пронации бедренной кости. Она как бы вплетается внутрь суставной капсулы, располагаясь от седалищной косточки вплоть до вертельной ямки.
- Лобково-бедренная связка отвечает за угол отведения свободной бедренной кости нижней конечности. Её волокна, как и седалищно-бедренная связка, проникают в суставную капсулу, однако, берут своё начало не у седалищной кости, а у лобкового сочленения.
- Круговая связка не покидает пределы суставной капсулы. Как следует из названия, она располагается по кругу, охватывая плотной петлёй головку и шейку бедренной кости и закрепляясь на передней поверхности нижней кости.
- Связка головки бедренной кости — самая оригинальная в анатомии тазобедренного сустава. В отличие от своих «коллег», она не защищает непосредственно сустав и не контролирует его подвижность; функции этой связки заключаются в сохранении кровеносных сосудов, которыми она пронизана. Такая особенность объясняется её расположением, совпадающим с траекторией сосудов: связка начинается у вертлужной впадины и заканчивается на головке бедренной кости.
Анатомические особенности и функции мышечного каркаса
Мускулатура тазобедренного сустава представлена волокнами различного рода и функциональности. Это связано в первую очередь с разнообразной траекторией движения, которую может выполнять бедро. Так, если классифицировать мышечные волокна на группы по функциям, в анатомии тазобедренного сустава следует выделить:
- Поперечную, или фронтальную, группу мышц, которая отвечает за сгибание и разгибание нижней конечности в области таза. Среди них присутствуют мышцы-сгибатели (портняжная, подвздошно-поясничная, гребенчатая, прямая, напрягатель широкой фасции) и мышцы-разгибатели бедра (большая ягодичная, большая приводящая, полусухожильная, полуперепончатая и двуглавая). Благодаря их скоординированной работе человек может садиться и вставать, присаживаться на корточки и принимать вертикальное положение, подтягивать ноги к груди и выпрямляться.
- Переднезадние, или сагиттальные, мышцы регулируют приведение-отведение ноги. К этой группе относятся приводящие (большая, короткая и длинная приводящие, тонкая и гребенчатая) и отводящие (внутренняя запирательная, напрягатель широкой фасции, близнецовая, грушевидная, средняя и малая ягодичные) мышечные волокна.
- Продольная группа мышц координирует вращение бедра. Здесь выделяют мышцы-супинаторы (близнецовая, грушевидная, подвздошно-поясничная, квадратная, портняжная, запирательная, большая ягодичная и задние группы средней и малой ягодичных волокон) и пронаторы (напрягатель широкой фасции, полусухожильная, полуперепончатая, передняя группа средней и малой ягодичных волокон).
Каждая из представленных в анатомии тазобедренного сустава мышц выполняет не только двигательную функцию: мощные волокна забирают на себя часть нагрузки при движениях. И чем более они натренированы, тем лучше справляются с давлением, разгружая тем самым сустав и выполняя амортизирующую функцию. Благодаря этому снижается ещё и вероятность травматизма при неудачных движениях, поскольку мышцы более мобильны и растяжимы, нежели ткани сустава.
Нервные волокна, примыкающие к тазобедренному суставу
Как и любой сустав организма человека, тазобедренное сочленение не отличается высокой организацией нервной системы: локализованные в этой области окончания в основном иннервируют мышечные волокна, регулируя степень чувствительности и скоординированную работу каждой группы мышц в ответ на внешнее воздействие. Условно все нервные волокна тазобедренной области можно разделить на 3 группы:
- передненаружные, к которым относятся ветви бедренного нерва;
- передневнутренние — ветви запирательного нерва;
- задние — ветви седалищного нерва.
Каждая группа локализована в определённом участке бедра, за который и отвечает в сложном устройстве нервной системы организма в целом и нижних конечностей в частности.
Кровообращение тканей тазобедренного сустава: анатомия артерио-венозного русла
В питании и снабжении кислородом тканей тазобедренного сустава принимают участие артерия круглой связки, восходящая ветвь латеральной и глубокая ветвь медиальной артерий, огибающих бедренную кость, а также определённые ветви наружной подвздошной, нижней подчревной, верхней и нижней ягодичных артерий. Причём значимость каждого из этих сосудов неодинакова и может изменяться с возрастом: если в юности сосуды круглой связки переносят ощутимое количество крови к головке бедра, то с годами этот объём снижается примерно до 20—30 %, уступая место медиальной огибающей артерии.
Физиологические возможности тазобедренного сустава
Тазобедренный сустав может выполнять движения сразу в трёх плоскостях — фронтальной, сагиттальной и вертикальной. Благодаря продуманному природой строению сустава человек может с лёгкостью сгибать и разгибать бедро, отводить его в сторону и приводить в исходное положение, вращать во всех направлениях, причём на довольно ощутимый угол, величина которого может варьировать в зависимости от анатомических особенностей и натренированности связочного аппарата. Но и это ещё не всё: тазобедренный сустав является одним из немногих соединений, способных переходить из фронтальной в сагиттальную ось, обеспечивая свободной конечности круговое движение в полном объёме. Именно от этой способности в первую очередь зависит подвижность человека, его физические данные и способности к определённым видам спорта (например, гимнастике, лёгкой атлетике, аэробике и т. д.).
Обратной стороной медали является быстрый износ хрящевых поверхностей тазобедренного сустава. Тазовые и бедренные кости переносят максимальную нагрузку во время ходьбы, бега и других видов физической активности, соответственно, это давление переносится и на суставы. Ситуация может усугубляться чрезмерно высоким весом, слишком интенсивной физической активностью или, наоборот, пассивным образом жизни, при котором мышечный аппарат практически не защищает сустав от деформации. В результате этого хрящевые поверхности начинают истираться, воспаляться и становиться тоньше, появляется болезненность, а траектория движений значительно ограничивается. Даже малейшее отклонение в состоянии мышц, связок или костей тазобедренного сустава может привести к серьёзной патологии, которая впоследствии потребует длительного и интенсивного лечения.
Впрочем, восстановление полноценной функции сочленения возможно не всегда: в некоторых случаях требуется оперативное вмешательство, при котором поражённые ткани заменяются протезом. Чтобы этого не произошло, стоит смолоду следить за состоянием опорно-двигательного аппарата, заниматься укреплением суставов, разумно и умеренно тренировать мышечный каркас и заботиться о правильном и полноценном питании организма. Только таким образом можно защитить суставы от разрушения, а себя — от болезненных ощущений, скованности движений и утомительного лечения!
Источник
Оглавление темы «Общая артрология.»:
Классификация суставов и их общая характеристикаКлассификацию суставов можно проводить по следующим принципам: По числу суставных поверхностей различают: По форме и по функции классификация проводится следующим образом. В противоположность этому шаровидная форма головки дает возможность производить вращение вокруг множества осей, совпадающих с радиусами шара (шаровидный сустав). Здесь мы видим проявление диалектического принципа единства формы и функции. На рисунке представлены: Двуосные суставы: 2a — эллипсовидный лучезапястный сустав, articulatio radiocarpea ellipsoidea; Трехосные суставы: 3a — шаровидный плечевой сустав (articulatio humeri — articulatio spheroidea); I. Одноосные суставы1. Цилиндрический сустав, art. trochoidea. Цилиндрическая суставная поверхность, ось которой располагается вертикально, параллельно длинной оси сочленяющихся костей или вертикальной оси тела, обеспечивает движение вокруг одной вертикальной оси — вращение, rotatio; такой сустав называют также вращательным. 2. Блоковидный сустав, ginglymus (пример — межфаланговые сочленения пальцев). Блоковидная суставная поверхность его представляет собой поперечно лежащий цилиндр, длинная ось которого лежит поперечно, во фронтальной плоскости, перпендикулярно длинной оси сочленяющихся костей; поэтому движения в блоковидном суставе совершаются вокруг этой фронтальной оси (сгибание и разгибание). Направляющие бороздка и гребешок, имеющиеся на сочленовных поверхностях, устраняют возможность бокового соскальзывания и способствуют движению вокруг одной оси. II. Двухосные суставы1. Эллипсовидный сустав, articulatio ellipsoidea (пример — лучезапястный сустав). Сочленовные поверхности представляют отрезки эллипса: одна из них выпуклая, овальной формы с неодинаковой кривизной в двух направлениях, другая соответственно вогнутая. Они обеспечивают движения вокруг 2 горизонтальных осей, перпендикулярных друг другу: вокруг фронтальной — сгибание и разгибание и вокруг сагиттальной — отведение и приведение. 2. Мыщелковый сустав, articulatio condylaris (пример — коленный сустав). Мыщелковый сустав можно рассматривать как разновидность эллипсовидного, представляющую переходную форму от блоковидного сустава к эллипсовидному. Поэтому основной осью вращения у него будет фронтальная. От блоковидного мыщелковый сустав отличается тем, что имеется большая разница в величине и форме между сочленяющимися поверхностями. Вследствие этого в отличие от блоковидного в мыщелковом суставе возможны движения вокруг двух осей. От эллипсовидного сустава он отличается числом суставных головок. Мыщелковые суставы имеют всегда два мыщелка, расположенных более или менее сагиттально, которые или находятся в одной капсуле (например, два мыщелка бедренной кости, участвующие в коленном суставе), или располагаются в разных суставных капсулах, как в атлантозатылочном сочленении. Поскольку в мыщелковом суставе головки не имеют правильной конфигурации эллипса, вторая ось не обязательно будет горизонтальной, как это характерно для типичного эллипсовидного сустава; она может быть и вертикальной (коленный сустав). Если мыщелки расположены в разных суставных капсулах, то такой мыщелковый сустав близок по функции к эллипсовидному (атлантозатылочное сочленение). Если же мыщелки сближены и находятся в одной капсуле, как, например, в коленном суставе, то суставная головка в целом напоминает лежачий цилиндр (блок), рассеченный посередине (пространство между мыщелками). В этом случае мыщелковый сустав по функции будет ближе к блоковидному. 3. Седловидный сустав, art. sellaris (пример — запястно-пястное сочленение I пальца). III. Многоосные суставы1. Шаровидные. Шаровидный сустав, art. spheroidea (пример — плечевой сустав). Одна из суставных поверхностей образует выпуклую, шаровидной формы головку, другая — соответственно вогнутую суставную впадину. Теоретически движение может совершаться вокруг множества осей, соответствующих радиусам шара, но практически среди них обыкновенно различают три главные оси, перпендикулярные друг другу и пересекающиеся в центре головки: Шаровидный сустав — самый свободный из всех суставов. Так как величина движения зависит от разности площадей суставных поверхностей, то суставная ямка в таком суставе мала сравнительно с величиной головки. Вспомогательных связок у типичных шаровидных суставов мало, что определяет свободу их движений. Разновидность шаровидного сочленения — чашеобразный сустав, art. cotylica (cotyle, греч. — чаша). Суставная впадина его глубока и охватывает большую часть головки. Вследствие этого движения в таком суставе менее свободны, чем в типичном шаровидном суставе; образец чашеобразного сустава мы имеем в тазобедренном суставе, где такое устройство способствует большей устойчивости сустава.
2. Плоские суставы, art. plana (пример — artt. intervertebrales), имеют почти плоские суставные поверхности. Их можно рассматривать как поверхности шара с очень большим радиусом, поэтому движения в них совершаются вокруг всех трех осей, но объем движений вследствие незначительной разности площадей суставных поверхностей небольшой. Тугие суставы — амфиартрозыПод этим названием выделяется группа сочленений с различной формой суставных поверхностей, но сходных по другим признакам: они имеют короткую, туго натянутую суставную капсулу и очень крепкий, нерастягивающийся вспомогательный аппарат, в частности короткие укрепляющие связки (пример — крестцово-подвздошный сустав). Вследствие этого суставные поверхности тесно соприкасаются друг с другом, что резко ограничивает движения. Такие малоподвижные сочленения и называют тугими суставами — амфиартрозами (BNA). Тугие суставы смягчают толчки и сотрясения между костями. К этим суставам можно отнести также плоские суставы, art. plana, у которых, как отмечалось, плоские суставные поверхности равны по площади. В тугих суставах движения имеют скользящий характер и крайне незначительны.
Видео урок: Классификация суставов. Объем движений в суставахДругие видео уроки по данной теме находятся: Здесь Также рекомендуем «Скелет туловища» |
Источник